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Stability in Nonlinear Neutral Differential
Equations with Infinite Delay

Abdelouaheb Ardjouni and Ahcene Djoudi

Abstract. In this paper we use the contraction mapping theorem to
obtain asymptotic stability results of the nonlinear neutral differential
equation with infinite delay

d

d t
x(t) = −a(t)x(t− τ1(t)) +

d

d t
Q(t, x(t− τ2(t)))

+

∫ t

−∞
D(t, s)f(x(s)) d s.

An asymptotic stability theorem with a necessary and sufficient con-
dition is proved, which improves and generalizes some results due to
Burton [6], Zhang [17], Althubiti, Makhzoum, Raffoul [1].

1. Introduction

Certainly, the Lyapunov direct method has been successfully used to in-
vestigate stability properties of a wide variety of ordinary, functional and
partial differential equations. Nevertheless, the application of this method
to problems of stability in differential equations with delay has encountered
serious difficulties if the delay is unbounded or if the equation has unbounded
terms [4–6]. Recently, investigators such as Burton, Zhang, Raffoul and oth-
ers have noticed that some of these difficulties vanish or might be overcome
by means of fixed point theory see ([1]-[15], [17]). The fixed point theory
does not only solve the problem on stability but has a significant advan-
tage over Lyapunov’s direct method. The conditions of the former are often
averages but those of the latter are usually pointwise (see [4]).

In this paper we consider the nonlinear neutral differential equation with
infinite delay

(1)
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d t
x(t) = −a(t)x(t− τ1(t)) +
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d t
Q(t, x(t− τ2(t)))

+

∫ t
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D(t, s)f(x(s)) d s,
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with the initial condition

x(t) = ψ(t) for t ∈ (−∞, t0],
where ψ ∈ C((−∞, t0],R) is bounded. Here C(S1, S2) denotes the set of all
continuous functions ϕ : S1arrowS2 with the supremum norm ‖.‖. Through-
out this paper we assume that a ∈ C(R+,R), D ∈ C(R+ × R,R) and
τ1, τ2 ∈ C(R+,R+) with t − τ1(t) → ∞ and t − τ2(t) → ∞ as t → ∞. The
functions Q(t, x) and f(x) are globally Lipschitz continuous in x. That is,
there are positive constants L1 and L2 such that

(2) |Q(t, x)−Q(t, y)| ≤ L1‖x− y‖,
and

(3) |f(x)− f(y)| ≤ L2‖x− y‖.
Also, there is positive constant L3 such that

(4)
∫ t

−∞
|D(t, s)|d s ≤ L3.

So, we assume that

(5) Q(t, 0) = f(0) = 0.

Equation (1) and its special cases have been investigated by many authors.
For example, Burton in [6], and Zhang in [17] have studied the equation

(6) x′(t) = −a(t)x(t− τ1(t)),
and proved the following.
Theorem A (Burton [6]). Suppose that τ1(t) = r and there exists a constant
α < 1 such that

(7)

∫ t

t−r
|a(s+ r)| d s

+

∫ t

0
|a(s+ r)|e−

∫ t
s a(u+r) du

(∫ s

s−r
|a(u+ r)|du

)
d s ≤ α,

for all t ≥ 0 and
∫∞
0 a(s)ds =∞. Then, for every continuous initial function

ψ : [−r, 0] → R, the solution x(t) = x(t, 0, ψ) of (6) is bounded and tends
to zero as →∞.
Theorem B (Zhang [17]). Suppose that τ1 is differentiable, the inverse
function g of t − τ1(t) exists, and there exists a constant α ∈ (0, 1) such
that for t ≥ 0, lim

t→∞
inf
∫ t
0 a(g(s)) d s > −∞ and

(8)

∫ t

t−τ1(t)
|a(g(s))| d s+

∫ t

0
e−

∫ t
s a(g(u)) du|a(s)||τ ′1(s)|d s

+

∫ t

0
e−

∫ t
s a(g(u)) du|a(g(s))|

(∫ s

s−τ1(s)
|a(g(u))| du

)
d s ≤ α.
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Then the zero solution of (6) is asymptotically stable if and only if∫ t
0 a(g(s)) d s→∞ as t→∞.
Obviously, Theorem B improves Theorem A. On the other hand, Althu-

biti, Makhzoum, Raffoul in [1] considered the following nonlinear neutral
differential equation

(9)
d

d t
x(t) = −a(t)x(t) + d

d t
Q(t, x(t− τ2(t))) +

∫ t

−∞
D(t, s)f(x(s)) d s,

and obtained the following.
Theorem C (Althubiti, Makhzoum, Raffoul [1]). Suppose (2)–(5) hold, and
there exists a constant α ∈ (0, 1) such that for t ≥ 0,

∫ t
0 a(s) d s → ∞ as

t→∞, and

(10) L1 +

∫ t

0
e−

∫ t
s a(u) du[L1|a(s)|+ L2L3] d s ≤ α.

Then every solution x(t) = x(t, 0, ψ) of (9) with a small continuous initial
function ψ is bounded and tends to zero as t→∞.

Our purpose here is to give, by using the contraction mapping principle,
asymptotic stability results of a nonlinear neutral differential equation with
infinite delay (1). An asymptotic stability theorem with a necessary and
sufficient condition is proved. The results presented in this paper improve
and generalize the main results in [1, 6, 17].

2. Main results

For each (t0, ψ) ∈ R+×C((−∞, t0],R), a solution of (1) through (t0, ψ) is
a continuous function x : (−∞, t0+σ)→ R for some positive constant σ > 0
such that x satisfies (1) on [t0, t0 + σ) and x = ψ on (−∞, t0]. We denote
such a solution by x(t) = x(t, t0, ψ). For each (t0, ψ) ∈ R+×C((−∞, t0],R),
there exists a unique solution x(t) = x(t, t0, ψ) of (1) defined on [t0,∞). For
fixed t0, we define ‖ψ‖ = sup{|ψ(t)| : −∞ < t ≤ t0}. Stability definitions
may be found in [4], for example.

Our aim here is to generalize Theorem B and Theorem C to (1).

Theorem 2.1. Suppose (2)–(5) hold. Let τj be differentiable, and suppose
that there exist continuous functions hj : [mj(t0),∞) → R for j = 1, 2 and
a constant α ∈ (0, 1) such that for t ≥ 0

(11) lim
t→∞

inf

∫ t

0
H(s) d s > −∞,
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and

(12)

L1 +
2∑
j=1

∫ t

t−τj(t)
|hj(s)|d s

+

∫ t

0
e−

∫ t
s H(u) du{| − a(s) + h1(s− τ1(s))(1− τ ′1(s))|

+ |h2(s− τ2(s))(1− τ ′2(s))|+ L1|H(s)|+ L2L3}d s

+
2∑
j=1

∫ t

0
e−

∫ t
s H(u) du|H(s)|

(∫ s

s−τj(s)
|hj(u)| du

)
d s ≤ α,

where H(t) =

2∑
j=1

hj(t). Then the zero solution of (1) is asymptotically stable

if and only if

(13)
∫ t

0
H(s) d s→∞ as t→∞.

Proof. First, suppose that (13) holds. For each t0 ≥ 0, we set

(14) K = sup
t≥0
{e−

∫ t
0 H(s) d s}.

Let ψ ∈ C((−∞, t0],R) be fixed and define

S = {ϕ ∈ C(R,R) : ϕ(t)→ 0 as t→∞, ϕ(t) = ψ(t) for t ∈ (−∞, t0]}.

This S is a complete metric space with metric ρ(x, y) = sup
t≥t0
{|x(t)− y(t)|}.

Multiply both sides of (1) by e
∫ t
t0
H(u) du and then integrate from t0 to t

to obtain

x(t) = (ψ(t0)−Q(t0, ψ(t0 − τ2(t0))))e
−

∫ t
t0
H(u) du

+Q(t, x(t− τ2(t))) +
2∑
j=1

∫ t

t0

e−
∫ t
s H(u) duhj(s)x(s) d s

+

∫ t

t0

e−
∫ t
s H(u) du

{
−a(s)x(s− τ1(s))−H(s)Q(s, x(s− τ2(s)))

+

∫ s

−∞
D(s, u)f(x(u)) du

}
d s.
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Performing an integration by parts, we have

x(t) =
(
ψ(t0)−Q

(
t0, ψ(t0 − τ2(t0))

))
e
−

∫ t
t0
H(u) du

+Q(t, x(t− τ2(t))) +
2∑
j=1

∫ t

t0

e−
∫ t
s H(u) du d

(∫ s

s−τj(s)
hj(u)x(u) du

)

+
2∑
j=1

∫ t

t0

e−
∫ t
s H(u) du{hj(s− τj(s))(1− τ ′j(s))}x(s− τj(s)) d s

+

∫ t

t0

e−
∫ t
s H(u) du

{
−a(s)x(s− τ1(s))−H(s)Q(s, x(s− τ2(s)))

+

∫ s

−∞
D(s, u)f(x(u)) du

}
d s.

Thus,

(15)

x(t) =
(
ψ(t0)−Q(t0, ψ(t0 − τ2(t0)))

−
2∑
j=1

∫ t0

t0−τj(t0)
hj(s)ψ(s) d s

)
× e−

∫ t
t0
H(u) du

+Q(t, x(t− τ2(t))) +
2∑
j=1

∫ t

t−τj(t)
hj(s)x(s) d s

+

∫ t

t0

e−
∫ t
s H(u) du

{
(−a(s) + h1(s− τ1(s))(1− τ ′1(s)))x(s− τ1(s))

+ h2(s− τ2(s))(1− τ ′2(s))x(s− τ2(s))
}
d s

+

∫ t

t0

e−
∫ t
s H(u) du

{
−H(s)Q(s, x(s− τ2(s)))

+

∫ s

−∞
D(s, u)f(x(u)) du

}
d s

−
2∑
j=1

∫ t

t0

e−
∫ t
s H(u) duH(s)

(∫ s

s−τj(s)
hj(u)x(u) du

)
d s.
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Use (15) to define the operator P : S → S by (Pϕ)(t) = ψ(t) for t ∈ (−∞, t0]
and

(16)

(Pϕ)(t) =
{
ψ(t0)−Q(t0, ψ(t0 − τ2(t0)))

−
2∑
j=1

∫ t0

t0−τj(t0)
hj(s)ψ(s) d s

}
× e−

∫ t
t0
H(u) du

+Q(t, ϕ(t− τ2(t))) +
2∑
j=1

∫ t

t−τj(t)
hj(s)ϕ(s) d s

+

∫ t

t0

e−
∫ t
s H(u) du

{
(−a(s) + h1(s− τ1(s))(1− τ ′1(s)))ϕ(s− τ1(s))

+ h2(s− τ2(s))(1− τ ′2(s))ϕ(s− τ2(s))
}
d s

+

∫ t

t0

e−
∫ t
s H(u) du

{
−H(s)Q(s, ϕ(s− τ2(s)))

+

∫ s

−∞
D(s, u)f(ϕ(u)) du

}
d s

−
2∑
j=1

∫ t

t0

e−
∫ t
s H(u) duH(s)

(∫ s

s−τj(s)
hj(u)ϕ(u) du

)
d s,

for t ≥ t0. It is clear that (Pϕ) ∈ C(R,R). We now show that (Pϕ)(t)→ 0
as t → ∞. Since ϕ(t) → 0 and t − τj(t) → ∞ as t → ∞, for each ε > 0,
there exists a T1 > t0 such that s ≥ T1 implies that |ϕ(s − τj(s))| < ε for
j = 1, 2. Thus, for t ≥ T1, the last term I6 in (16) satisfies

|I6| = |
2∑
j=1

∫ t

t0

e−
∫ t
s H(u) duH(s)

(∫ s

s−τj(s)
hj(u)ϕ(u) du

)
d s|

≤
2∑
j=1

∫ T1

t0

e−
∫ t
s H(u) du|H(s)|

(∫ s

s−τj(s)
|hj(u)||ϕ(u)| du

)
d s

+

2∑
j=1

∫ t

T1

e−
∫ t
s H(u) du|H(s)|

(∫ s

s−τj(s)
|hj(u)||ϕ(u)|du

)
d s

≤ sup
σ≥m(t0)

|ϕ(σ)|
2∑
j=1

∫ T1

t0

e−
∫ t
s H(u) du|H(s)|

(∫ s

s−τj(s)
|hj(u)| du

)
d s

+ ε

2∑
j=1

∫ t

T1

e−
∫ t
s H(u) du|H(s)|

(∫ s

s−τj(s)
|hj(u)| du

)
d s.
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By (13), there exists T2 > T1 such that t ≥ T2 implies

sup
σ≥m(t0)

|ϕ(σ)|
2∑
j=1

∫ T1

t0

e−
∫ t
s H(u) du|H(s)|

(∫ s

s−τj(s)
|hj(u)|du

)
d s < ε.

Apply (12) to obtain |I6| < ε+ αε < 2ε. Thus, I6 → 0 as t→∞. Similarly,
we can show that the rest of the terms in (16) approach zero as t → ∞.
This yields (Pϕ)(t) → 0 as t → ∞, and hence Pϕ ∈ S. Also, by (12), P
is a contraction mapping with contraction constant α. By the contraction
mapping principle (Smart [16], p. 2), P has a unique fixed point x in S which
is a solution of (1) with x(t) = ψ(t) on (−∞, t0] and x(t) = x(t, t0, ψ) → 0
as t→∞.

To obtain the asymptotic stability, we need to show that the zero solution
of (1) is stable. Let ε > 0 be given and choose δ > 0 (δ < ε) satisfying
2δKe

∫ t0
0 H(u) du + αε < ε. If x(t) = x(t, t0, ψ) is a solution of (1) with

‖ψ‖ < δ, then x(t) = (Px)(t) defined in (16). We claim that |x(t)| < ε for
all t ≥ t0. Notice that |x(s)| < ε on (−∞, t0]. If there exists t∗ > t0 such
that |x(t∗)| = ε and |x(s)| < ε for −∞ < s < t∗, then it follows from (16)
that

|x(t∗)| ≤ ‖ψ‖
(
1 + L1 +

2∑
j=1

∫ t0

t0−τj(t0)
|hj(s)| d s

)
e
−

∫ t∗
t0
H(u) du

+ L1ε+ ε
2∑
j=1

∫ t∗

t∗−τj(t∗)
|hj(s)|d s

+ ε

∫ t∗

t0

e−
∫ t∗
s H(u) du

{
| − a(s) + h1(s− τ1(s))(1− τ ′1(s))|

+ |h2(s− τ2(s))(1− τ ′2(s))|+ L1|H(s)|+ L2L3

}
d s

+ ε

2∑
j=1

∫ t∗

t0

e−
∫ t∗
s H(u) du|H(s)|

(∫ s

s−τj(s)
|hj(u)| du

)
d s

≤ 2δKe
∫ t0
0 H(u) du + αε < ε,

which contradicts the definition of t∗. Thus, |x(t)| < ε for all t ≥ t0, and
the zero solution of (1) is stable. This shows that the zero solution of (1) is
asymptotically stable if (13) holds.

Conversely, suppose (13) fails. Then by (11) there exists a sequence {tn},
tn → ∞ as n → ∞ such that lim

n→∞

∫ tn
0 H(u) du = l for some l ∈ R+. We

may also choose a positive constant J satisfying

−J ≤
∫ tn

0
H(u) du ≤ J,
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for all n ≥ 1. To simplify our expressions, we define

ω(s) = | − a(s) + h1(s− τ1(s))(1− τ ′1(s))|+ L2L3

+ |h2(s− τ2(s))(1− τ ′2(s))|+ |H(s)|
(
L1 +

2∑
j=1

∫ s

s−τj(s)
|hj(u)| du

)
,

for all s ≥ 0. By (12), we have

∫ tn

0
e−

∫ tn
s H(u) duω(s) d s ≤ α.

This yields

∫ tn

0
e
∫ s
0 H(u) duω(s) d s ≤ αe

∫ tn
0 H(u) du ≤ eJ .

The sequence {
∫ tn
0 e

∫ s
0 H(u)duω(s)ds} is bounded, so there exists a convergent

subsequence. For brevity of notation, we may assume that

lim
n→∞

∫ tn

0
e
∫ s
0 H(u) duω(s) d s = γ,

for some γ ∈ R+ and choose a positive integer m so large that

∫ tn

tm

e
∫ s
0 H(u) duω(s) d s < δ0/4K,

for all n ≥ m, where δ0 > 0 satisfies 2δ0KeJ + α ≤ 1.
By (11), K in (14) is well defined. We now consider the solution x(t) =

x(t, tm, ψ) of (1) with ψ(tm) = δ0 and |ψ(s)| ≤ δ0 for s ≤ tm. We may
choose ψ so that |x(t)| ≤ 1 for t ≥ tm and

ψ(tm)−Q(tm, ψ(tm − τ2(tm)))−
2∑
j=1

∫ tm

tm−τj(tm)
hj(s)ψ(s) d s ≥

1

2
δ0.
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It follows from (16) with x(t) = (Px)(t) that for n ≥ m

(17)

|x(tn)−Q(tn, x(tn − τ2(tn)))−
2∑
j=1

∫ tn

tn−τj(tn)
hj(s)x(s) d s|

≥ 1

2
δ0e
−

∫ tn
tm

H(u) du −
∫ tn

tm

e−
∫ tn
s H(u) duω(s) d s

=
1

2
δ0e
−

∫ tn
tm

H(u) du − e−
∫ tn
0 H(u) du

∫ tn

tm

e
∫ s
0 H(u) duω(s) d s

= e−
∫ tn
tm

H(u) du

(
1

2
δ0 − e−

∫ tm
0 H(u) du

∫ tn

tm

e
∫ s
0 H(u) duω(s) d s

)
≥ e−

∫ tn
tm

H(u) du

(
1

2
δ0 −K

∫ tn

tm

e
∫ s
0 H(u) duω(s) d s

)
≥ 1

4
δ0e
−

∫ tn
tm

H(u) du ≥ 1

4
δ0e
−2J > 0.

On the other hand, if the zero solution of (1) is asymptotically stable, then
x(t) = x(t, tm, ψ)→ 0 as t→∞. Since tn− τj(tn)→∞ as n→∞ and (12)
holds, we have

x(tn)−Q(tn, x(tn − τ2(tn)))−
2∑
j=1

∫ tn

tn−τj(tn)
hj(s)x(s) d s→ 0 as n→∞,

which contradicts (17). Hence condition (13) is necessary for the asymptotic
stability of the zero solution of (1) The proof is complete. �

Remark 2.1. It follows from the first part of the proof of Theorem 2.1 that
the zero solution of (1) is stable under (11) and (12). Moreover, Theorem
2.1 still holds if (12) is satisfied for t ≥ tσ for some tσ ∈ R+.

For the special case Q(t, x) = 0 and D(t, s) = 0, we can get

Corollary 2.1. Let τ1 be differentiable, and suppose that there exist contin-
uous function h1 : [m1(t0),∞) → R where m1(t0) = inf{t − τ1(t), t ≥ t0},
and a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0
h1(s) d s > −∞,

and

(18)

∫ t

t−τ1(t)
|h1(s)| d s

+

∫ t

0
e−

∫ t
s h1(u) du| − a(s) + h1(s− τ1(s))(1− τ ′1(s))|d s

+

∫ t

0
e−

∫ t
s h1(u) du|h1(s)|

(∫ s

s−τ1(s)
|h1(u)| du

)
d s ≤ α.
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Then the zero solution of (6) is asymptotically stable if and only if∫ t

0
h1(s) d s→∞ as t→∞.

Remark 2.2. When τ1(s) = r, a constant, h1(s) = a(s + r), Corollary 2.1
reduces to Theorem A. When h1(s) = a(g(s)), where g(s) is the inverse
function of s− τ1(s), Corollary 2.1 reduces to Theorem B.

We give an example to illustrate the applications of Corollary 2.1.

Example 2.1. Consider the following linear delay differential equation

(19) x′(t) = −a(t)x(t− τ1(t)),
where τ1(t) = 0.285t, a(t) = 1/(0.715t + 1). Then the zero solution of (19)
is asymptotically stable.

Proof. Choosing h1(t) = 1.25/(t+ 1) in Corollary 2.1, we have∫ t

t−τ1(t)
|h1(s)| d s =

∫ t

0.715t

1.25

s+ 1
d s

= 1.25 ln
t+ 1

0.715t+ 1
< 0.4194,

∫ t

0
e−

∫ t
s h1(u) du|h1(s)|

(∫ s

s−τ1(s)
|h1(u)| du

)
d s

<

∫ t

0
e−

∫ t
s (1.25/(u+1)) du 1.25

1 + s
× 0.4194 d s < 0.4194,

and ∫ t

0
e−

∫ t
s h1(u) du| − a(s) + h1(s− τ1(s))(1− τ ′1(s))| d s

=

∫ t

0
e−

∫ t
s (1.25/(u+1)) du 1− 1.25× 0.715

0.715s+ 1
d s

<
1− 1.25× 0.715

1.25× 0.715

∫ t

0
e−

∫ t
s (1.25/(u+1)) du 1.25

s+ 1
d s < 0.1189.

It is easy to see that all the conditions of Corollary 2.1 hold for α = 0.4194+
0.4194 + 0.1189 = 0.9577 < 1. Thus, Corollary 2.1 implies that the zero
solution of (19) is asymptotically stable.

However, Theorem B cannot be used to verify that the zero solution of
(19) is asymptotically stable. In fact, a(g(t)) = 1/(t+ 1). As t→∞,∫ t

t−τ1(t)
|a(g(s))|d s =

∫ t

0.715t

1

s+ 1
d s

= ln
t+ 1

0.715t+ 1
→ − ln(0.715),
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∫ t

0
e−

∫ t
s a(g(u)) du|a(g(s))|

(∫ s

s−τ1(s)
|a(g(s))|du

)
d s

=

∫ t

0
e−

∫ t
s (1/(u+1)) du 1

1 + s

(∫ s

0.715s

1

u+ 1
du

)
d s

=
1

t+ 1

∫ t

0
[ln(s+ 1)− ln(0.715s+ 1)] d s→ − ln(0.715),

∫ t

0
e−

∫ t
s a(g(u)) du|a(s)||τ ′1(s)|d s

=
0.285

t+ 1

∫ t

0

s+ 1

0.715s+ 1
d s

=
0.285

0.715

t

t+ 1
−
(
0.285

0.715

)2 ln(0.715t+ 1)

t+ 1
→ 0.285

0.715
.

Thus, we have

lim
t≥0

{∫ t

t−τ1(t)
|a(g(s))|d s+

∫ t

0
e−

∫ t
s a(g(u)) du|a(s)||τ ′1(s)| d s

+

∫ t

0
e−

∫ t
s a(g(u)) du|a(g(s))|

(∫ s

s−τ1(s)
|a(g(s))| du

)
d s
}

= −2 ln(0.715) + 0.285

0.715
' 1.0695.

In addition, the left-hand side of the following inequality is increasing in
t > 0, then there exists some t0 > 0 such that for t > t0,∫ t

t−τ1(t)
|a(g(s))| d s+

∫ t

0
e−

∫ t
s a(g(u)) du|a(s)||τ ′1(s)|d s

+

∫ t

0
e−

∫ t
s a(g(u)) du|a(g(s))|

(∫ s

s−τ1(s)
|a(g(s))| du

)
d s > 1.069.

This implies that condition (8) does not hold. Thus, Theorem B cannot be
applied to equation (19). �

Letting τ1 = 0, we have

Corollary 2.2. Suppose (2)–(5) hold. Let τ2 be differentiable, and suppose
that there exist continuous functions hj : [mj(t0),∞) → R for j = 1, 2 and
a constant α ∈ (0, 1) such that for t ≥ 0

lim
t→∞

inf

∫ t

0
H(s) d s > −∞,
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and

(20)

L1 +

∫ t

t−τ2(t)
|h2(s)| d s

+

∫ t

0
e−

∫ t
s H(u) du

{
| − a(s) + h1(s)|+ |h2(s− τ2(s))(1− τ ′2(s))|

+ L1|H(s)|+ L2L3

}
d s

+

∫ t

0
e−

∫ t
s H(u) du|H(s)|

(∫ s

s−τ2(s)
|h2(u)|du

)
d s ≤ α,

where H(t) =

2∑
j=1

hj(t). Then the zero solution of (9) is asymptotically stable

if and only if ∫ t

0
H(s) d s→∞ as t→∞.

Remark 2.3. When h1(s) = a(s) and h2(s) = 0, Corollary 2.2 reduces to
Theorem C.
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